当前位置:顶点小说>都市言情>学霸从改变开始> 第404章 最贪的选择
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第404章 最贪的选择(1 / 4)

陈舟明显愣了一下。

这是一上来,就考自己吗?

从几何角度研究非交换环?

真要说起来,对于非交换环,陈舟还是有些看法的。

非交换环的一个最常见的例子,或许就是矩阵了。

利用矩阵可以得到一批非交换环的反例。

就好像,若s是包含在环r内的相应维数为无穷的域。

那么a=re_11+re_12+se_22,是左noether与左artin的。

但不是右noerther与右artin,这说明了链条件在非交换环中有左与右的差别。

在除环上的所有矩阵的有限直积,构成了所谓的半单环类。

这就是通常所说的wedderburn-artin定理。

这也是非交换环中第一个精彩的结构定理。

更加有趣的是,它通过矩阵的对称结构,自然说明了左半单环等价于右半单环。

在交换环中,最常见的两个根分别是jacobson根与幂零根。

前者简称为大根,它是所有极大理想的交。

后者简称为素根或小根,它是所有素理想的交。

而在非交换的情形中,一个根就可能分化为三个根,满足某类条件左、右理想以及理想的交。

事实上,非交换环r,所有极大左理想的交,恰恰就是所有极大右理想的交。

并且它们良好的继承了相应的可逆性质。

因此就称其为非交换环的jacobson根,也记作rad(r)。

尽管非交换环中有左与右的区别,但也不乏此类殊途同归的有趣现象。

而在交换代数中,由于局部化技术的广泛使用,局部环成为了一个研究的焦点。

但非交换环的局部环技术,

上一章 目录 +书签 下一页