当前位置:顶点小说>科幻灵异>走进不科学> 第四百五十一章 杨老:无所谓,我会出手
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第四百五十一章 杨老:无所谓,我会出手(2 / 11)

徐云的思维竟然如此敏捷,前后没几分钟就给出了一个非常精妙的计算方向。

加之有此前在锦屏深地实验室那次的配合经历打底,周绍平才临时做出了这么个决定。

也就是有徐云表现出了货真价实的能力这个‘因’,才有的周绍平所选择的‘果’。

因此对于徐云的思路,周绍平确实双手赞同。

在周绍平做出决定后。

徐云便不再迟疑,开始计算起了绕y轴旋转算符的矩阵元。

这其实不是一件容易活儿。

旋转矩阵和费米面一样,也是一个涵盖多领域的玩意儿。

比如shader也就是编程领域中就也有旋转矩阵,不过shader的旋转矩阵很容易。

只要通过正余弦关系做正余弦展开,然后做成矩阵相乘的格式,再用三个向量点乘充当正交基底就行了。

但到了粒子物理领域嘛

这事儿就比较复杂了。

因为它涉及到了实标量场的正则量子化范畴。

众所周知。

对于一个经典的由n个质点所构成的力学系统,它的广义坐标可定义为qi(i=1,2,.,n)。

其中n=3n为广义坐标空间的维数。

这时候呢。

系统的拉氏函数定义为:

l=l(qi,q˙i),这道公式标注为1。

而对于场Ψ,则它的拉氏密度函数l可定义为:

l=l(Ψ,μΨ)标注为2。

且拉氏密度函l是一个标量,其中场Ψ可以是一个标量、旋量、矢量或张量。

因此在弯曲时空中,一般物质场(引力场除外)的拉氏密度应该可以写成:

l=l(Ψ,μΨ)标注为3。

对于微观系统,一般还不需要考

上一页 目录 +书签 下一页