当前位置:顶点小说>科幻灵异>走进不科学> 第二十五章 韩·数学鬼才·立(求追读啊啊啊啊啊啊!!!!!)
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第二十五章 韩·数学鬼才·立(求追读啊啊啊啊啊啊!!!!!)(1 / 5)

屋子里,徐云正在侃侃而谈:

“艾萨克先生,韩立爵士计算发现,二项式定理中指数为分数时,可以用e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……来计算。”

说着徐云拿起笔,在纸上写下了一行字:

当n=0时,e^x>1。

“艾萨克先生,这里是从x^0开始的,用0作为起点讨论比较方便,您可以理解吧?”

小牛点了点头,示意自己明白。

随后徐云继续写道:

假设当n=k时结论成立,即e^x>1+x/1!+x^2/2!+x^3/3!+……+x^k/k!(x>0)

则e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^k/k!]>0

那么当n=k+1时,令函数f(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^(k+1)/(k+1)]!(x>0)

接着徐云在f(k+1)上画了个圈,问道:

“艾萨克先生,您对导数有了解么?”

小牛继续点了点头,言简意赅的蹦出两个字:

“了解。”

学过数学的朋友应该都知道。

导数和积分是微积分最重要的组成部分,而导数又是微分积分的基础。

眼下已经时值1665年末,小牛对于导数的认知其实已经到了一个比较深奥的地步了。

在求导方面,小牛的介入点是瞬时速度。

速度=路程x时间,这是小学生都知道的公式,但瞬时速度怎么办?

比如说知道路程s=t^2,那么t=2的时候,瞬时速度v是多少呢?

数学家的思维,就是将没学过的问题转化成学过的问题。

上一章 目录 +书签 下一页